|
板凳
發(fā)表于 2023-3-22 17:33:00
|
只看該作者
mathematica代碼
T1z2018 = Range[5000];
T2z2018 = Range[5000];
T3z2018 = Range[5000];
T4z2018 = Range[5000];
T5z2018 = Range[5000];
For[p = 1, p < 5000, p++, w = 0.001*p; T0 = {{2 - (w^2), -1}, {1, 0}};
T1 = {{(2.5 - (w^2))/1.5, -(1/1.5)}, {1, 0}};
T2 = {{2 - ((w^2)/3), -1}, {1, 0}};
T4 = {{(4.5 - (0.5*(w^2)))/3, -1.5/3}, {1, 0}};
T5 = {{(4.5 - (0.5*(w^2)))/1.5, -3/1.5}, {1, 0}};
T6 = {{2 - ((w^2)/1.5), -1}, {1, 0}};
T7 = {{(6 - (0.5*(w^2)))/3, -1}, {1, 0}};
T3 = {{(2.5 - (w^2))/1, -1.5/1}, {1, 0}};
sigema = 1 - ((w^2)/2) - (I*w*((1 - ((w^2)/4))^(1/2)));(*假設(shè)它不加1*)
gamma = w*((1 - ((w^2)/4))^(1/2));
T2={{2-((w^2)/3),-1},{1,0}};
T4={{(4.5-(0.5*(w^2)))/1.5,-3/1.5},{1,0}};
T5={{(4.5-(0.5*(w^2)))/3,-1.5/3},{1,0}};
T6={{2-((w^2)/1.5),-1},{1,0}};
T7={{(6-(0.5*(w^2)))/3,-1},{1,0}};
T3={{(2.5-(w^2))/1.5,-1/1.5},{1,0}};*)
M7 = T1.T2.T3;(*I鏈子*)
M7 = MatrixPower[M7, 1];
M6 = T1.T2.T6.T2.T3;
M6 = MatrixPower[M6, 1];(*III鏈子*)
M3 = T1.T4.T5.T3;(*II鏈子*)
M4 = T1.T4.T7.T5.T3;
M3 = MatrixPower[M3, 1];
M4 = MatrixPower[M4, 1];
M5 = T1.T2.T6.T4.T5.T3;(*V鏈子*)
T1z2018[[p]] =
4*(gamma^2)*((Abs[
M7[[1, 1]] - (sigema*(M7[[2, 1]] -
M7[[1, 2]])) + (sigema^2)*(-M7[[2, 2]])])^(-2));
T2z2018[[p]] =
4*(gamma^2)*((Abs[
M3[[1,
1]] - (sigema*(M3[[2, 1]] - M3[[1, 2]])) + (sigema^2)*(-M3[[
2, 2]])])^(-2));
T3z2018[[p]] =
4*(gamma^2)*((Abs[
M6[[1, 1]] - (sigema*(M6[[2, 1]] -
M6[[1, 2]])) + (sigema^2)*(-M6[[2, 2]])])^(-2));
T4z2018[[p]] =
4*(gamma^2)*((Abs[
M4[[1, 1]] - (sigema*(M4[[2, 1]] -
M4[[1, 2]])) + (sigema^2)*(-M4[[2, 2]])])^(-2));
T5z2018[[p]] =
4*(gamma^2)*((Abs[
M5[[1, 1]] - (sigema*(M5[[2, 1]] -
M5[[1, 2]])) + (sigema^2)*(-M5[[2, 2]])])^(-2));
];
p1 = ListPlot[T1z2018[[Range[0, 2000]]], Joined -> True,
PlotStyle -> Red]
p2 = ListPlot[T2z2018[[Range[0, 2000]]], Joined -> True,
PlotStyle -> Green]
p3 = ListPlot[T3z2018[[Range[0, 2000]]], Joined -> True,
PlotStyle -> Cyan]
p4 = ListPlot[T4z2018[[Range[0, 2000]]], Joined -> True,
PlotStyle -> Pink]
p5 = ListPlot[T5z2018[[Range[0, 2000]]], Joined -> True,
PlotStyle -> Black]
Show[p1, p2, p3, p4, p5, PlotRange -> All] |
|